| Este sitio web utiliza cookies para mejorar la experiencia de usuario y obtener datos estadísticos. Si continua navegando se considera que acepta nuestra política de cookies. | 

| La necesidad de los análisis CAE y CFD en el Diseño de Motores 2T diesel | ||||||||||||||||||||||
Con la aparición de la herramientas de diseño por ordenador (CAD 3D y 2D) y simulación por elementos finitos (CAE y CFD) se ha permitido un gran avance en el proceso de diseño de motores de dos tiempos diesel.  
Todos parámetros que determinan la arquitectura de un motor pueden ser optimizados en las búsqueda de un más perfecto funcionamiento. La forma de comprobar y validar esta optimización es por medio de pruebas de funcionamiento. Antiguamente era necesario contruir prototipos de motores donde se analizaba su funcionamiento con las modificaciones implemementadas, lo cual tenía un elavadísimo coste que limitaba el llevar a cabo dichas mejoras. Actualmente contamos con las herramientas CAD, CAE y el CFD, que nos van a permitir optimizar el diseño de un motor antes de contruirlo, por medio del diseño virtual por ordenador y posteriormente las simulaciones, podremos predecir su comportamiento. El ahorro de costes en tiempo y dinero es incomparable, además de la evolución del diseño mucho más rápida. 
El cálculo de esfuerzos y la resistencia de los materiales de los 
elementos que componen el motor son validados por medio de análisis FEM,
 o cálculo por elementos finitos a partir de los modelos 3D previamente 
realizados por ordenador, lo que se conoce como CAD 3D, es decir los 
componentes son creados virtualmente por ordenador a escala real, 
posteriormente todos estos elementos, ordinariamente compuestos por 
miles de elementos son ensamblados en conjuntos y subconjuntos, para 
crear un motor completo realizado por ordenador. Posteriormente se 
analizan por medio del CAE el comportamiento de estos elementos, se le 
aplican a las geometrías las propiedades de materiales con las que están
 fabricados, condiciones de contorno, restricciones y cargas, etc. Se 
realizan miles de simulaciones FEM para validar el comportamiento de 
cada uno de los elementos que componen el motor. A continuación se 
muestra el comportamiento del cigueñal de un motor sometido a las cargas
 que recibirá durante su funcionamiento real una vez contruido, el 
análisis muestra el nivel de tensiones que recibe el material en cada 
punto de su geometría. 
Los motores de dos tiempos en general presentan un inconveniente que 
tiene una gran influencia en el desarrollo de su ciclo de 
funcionamiento, este problema viene motivado por el hecho de tener que 
realizar las cuatro fases del ciclo de funcionamiento (expansión, 
escape, admisión y compresión) en una sola vuelta del cigüeñal, por 
tanto los periodos necesarios para cada una de las fases son 
necesariamente más cortos que en un motor de cuatro tiempos. De todas 
ellas, las etapas más críticas son el escape-admisión, que es cuando se 
renueva la carga dentro del cilindro, es por ello que en el diseño del 
motor es sumamente importante que dichas etapas se lleven a cabo de 
forma óptima, para que el motor pueda desarrollar buenas prestaciones. 
La figura siguiente muestra el ciclo abierto de un otor de dos tiempos, representado por medio de un diagrama presión-volumen. PMS es punto muerto superior. PMI es punto muerto inferior. En la siguiente figura, se muestra el esquema de barrido y renovación de la carga del motor MAN S50MC. La circulación de aire (color rojo) y gases de escape (color azul). 
Tal y como se puede observar en la figura anterior, el aire entrante se 
utiliza para expulsar fuera o barrer los gases de escape y mientras 
tanto llenar el espacio con aire fresco. Durante el proceso, una 
cantidad de aire externo es usado para limpiar el cilindro de gases de 
combustión. El aire entrante a presión dentro del cilindro se llama aire
 de barrido, y las lumbreras a través de los que entrase son llamadas 
lumbreras de admisión o de barrido. El barrido de los motores de dos 
tiempos se caracteriza por dos problemas típicos: las pérdidas por 
short-circuit y mixing. Short-circuit (cortocircuito) consiste en 
expulsar parte de la carga de aire fresco directamente al escape y 
Mixing (mezcla) consiste en que hay una pequeña cantidad de gases 
residuales que permanecen atrapados sin ser expulsados, los cuales se 
mezclan con parte de la carga de aire fresco. A fin de reducir estos 
problemas, el aire de barrido que entra dentro del cilindro a partir de 
las lumbreras de admisión debe estar perfectamente dirigido.  
La siguiente figura, obtenida mediante un análisis CFD con OpenFOAM, muestra la distribución de velocidades del flujo en el interior del cilindro durante la renovación de la carga. 
El motor MAN B&W 7S50MC cuenta
 con 7 cilindros en línea, con un diámetro de cilindro de 500 mm y una 
carrera de 1910 mm, suma una cilindrada total de 375 litros y desarrolla
 una potencia máxima de 9.988 kW a 127 rpm. Cada cilindro posee en su 
parte baja 16 lumbreras de admisión y en la culata posee una gran 
válvula de escape para permitir la exhaustación de los gases quemados.  
Las características técnicas del motor MAN B&W 7S50MC son las siguientes: 
 
Por medio del análisis CFD proporciona información completa sobre el 
fenómeno en el interior del cilindro y la influencia de multitud de 
factores. En el campo de los motores marinos medianas y grandes, el 
análisis CFD es especialmente útil porque un prototipo experimental es 
extremadamente costoso y la construcción de un modelo a escala a veces 
no es suficientemente preciso. 
La siguiente figura muestra las fracciones másicas de gases de escape (color azul) y aire (color rojo) para un recorrido desde 90º hasta 270º de ángulo de cigüeñal. 
FORMACIÓN RECOMENDADA: 
Para análisis CFD recomendamos el
software gratuito OpenFOAM, que permite reproducir y simular el 
comportamientode un motor en lo referente a la mecánica de fluidos. Si 
desea recibir un curso de  formación para aprender a manejar el 
programa de CFD de uso libre  OpenFOAM, le recomendamos que realice el 
curso de Technical Courses:  
Para realizar anáisis FEM le recomendamos el software gratuito Code_Aster, que permite reproducir y simular el comportamientode un motor en lo referente a la resistencia estructural. Si desea recibir un curso de formación para aprender a manejar el programa FEM Code_Aster, le recomendamos que realice el curso de Technical Courses: - Curso online de Code_Aster 
FUENTES: 
 | 
          ||||||||||||||||||||||
| Publicado el 2016-12-29 10:26:38 por Carlos Rodríguez | ||||||||||||||||||||||
| Twittear | ||||||||||||||||||||||